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The vortex sponge, which postulates a steady state of vortex turbulence in an ideal fluid, is a 
substratum invented to explicate parsimoniously "action at a distance" and especially vacuum 
electromagnetics. 

A disturbance of the vortex sponge's structural elements is shown to behave like a Schrödinger 
quantum particle. Vorticity reversal points model elementary electrical charges. 

1. Substratum Approach 

The substratum method of modeling physical fields 
and particles rests on the idea of a material medium 
which fills without gaps all space. This universal con-
tinuum is usually referred to as a substratum, aether 
or physical vacuum. In the substratum approach 
physical fields are modeled by various kinds of defor-
mation of the substratum, while particles of matter are 
associated with soliton-like excitations of the substra-
tum. 

One of the more promising small-scale mechanical 
models of the substratum is represented by a steady 
state of vortex turbulence of an ideal incompressible 
fluid, historically called the vortex sponge [1]. It has 
been shown [2] that this model is able to simulate 
vacuum electromagnetics. A soliton-like excitation of 
the vortex sponge's fine structure will be shown below 
to behave like a Schrödinger quantum particle. Other 
features of the vortex sponge mimic those of a quan-
tum vacuum of the conventional theory. 

2. Methods to Handle Turbulence 

Usual methods based on a rigorous hydrodynami-
cal ab initio approach fail to provide information 
about the fine structure of a turbulent state of a liquid. 
However, they predict the tendency of a turbulence to 
self-organization [3]. 

Reprint requests to Dr. V. P. Dmitriyev, Box 160, Moscow 
117574, Russia. 

As in any many-body problem, in order to promote 
a solution one must accept a priori some constitu-
tional assumptions. In the case of turbulence, we may 
make a conjecture about vorton structure of the fluid. 
This means viewing the turbulent fluid as a system of 
eddies treated like quasicorpuscles [4, 5]. At this point 
there may be calculated the statistics of "spins" or the 
system may even be described in terms of creation-
annihilation operators with the Hamiltonian just as in 
quantum electrodynamics [5]. A simple statistics of 
spin corpuscles has been shown [6] to be a tentative 
model of electrostatic interaction. 

The vortex sponge in its proper sense appears as a 
result of another assumption concerning the co-
herency of the system of eddies. Separate eddies are 
supposed not only to interact with each other, as it 
follows from hydrodynamics [4] but, what is more, 
they unite in linear chains such as shown in Figure 1. 
Thus, the vortex sponge may be viewed [2] as a heap 
of randomly oriented straight chains of eddies, or vor-
tex filaments (Figure 2). It is the dynamics of the latter 
secondary structure, as contrasted with the dynamics 
of the primary fluid, that is of interest here. 

We consider first the dynamics of a single isolated 
vortex filament or chain of eddies and then generalize 
it to three dimensions. 

X 
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Fig. 1. A chain of eddies. 
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Fig. 2. A typical fragment, "nod", of the vortex sponge. 
Arrows indicate a direction of vorticity. 

Fig. 3. The drift V of a bent vortex filament in relation to its 
curvature and vorticity. 

3. Vortex Filament 

The motion of a vortex filament is governed by a 
dependence of the velocity V of the vortex filament's 
liquid element on the curve's local form. To express 
such a law analytically one needs to describe the vor-
tex filament as a space curve in the usual Frenet-Seret 
frame. 

First, a point on a spatial curve is defined by the 
position vector r, which is a function r (I) of the length / 
measured from a fiducial point along the curve. For a 
moving curve, there is a further dependence r(l, t) on 
the time t. Excluding information about the curve's 
space position, the local form of the curve is fully 
specified by its curvature k(l, t) and torsion z (I, t). The 
latters are defined through the two unit vectors, a 
tangent e(l, t) = dr/dl and principal normal n(l, t), by 
the Frenet-Seret formulae 

kn = de/dl, t / i = - 0 ( « x » ) / S / , 

\e\ = i, \n\ = \ . 

The motion of the vortex filament without stretch-
ing is described in these terms by 

dr 
V(l, t) = — = v1ke x n, (3.2) 

where v t stands for the coefficient of local self-induc-
tion and e is assumed (in absence of inversion) to be 
parallel to the filament's vorticity vector [7] (Fig. 3; for 
a rigorous derivation see [8]). Differentiating the latter 
expression with respect to I and using (3.1), we get a 
positionally invariant form of the motion law 

de d2e 
e7 = V l ' x s P 

(3.3) 

It is hard to judge from the motion equations (3.3) 
and (3.1) the character of the vortex filament's spacial 
and temporal evolution. Fortunately, these equations 
can be converted to a form well known in nonlinear 
mechanics. It was shown rigorously [9] that (3.3) and 
(3.1) are transformed to the nonlinear Schrödinger 
equation 

öiA 
~dt 

a v 
0 / 2 

under the substitution 

ij/ = k exp 
L \o 

i [ \ z d l - cot 

(3.4) 

(3.5) 

where co = const is an energy integral of motion. 
Equation (3.4) possesses a soliton solution which 

corresponds to a hump or loop (Fig. 4 b) of the vortex 
filament. If it has a nonplanar configuration, the dis-
turbance moves along the vortex filament with local 
velocity 

v(l, t) = 2r vx (3.6) 

(3.1) 

As in case of the ordinary Schrödinger equation, the 
wave function \j/ keeps its norm in the course of 
motion: j | ij/ \2 dl = const. 

4. Chain of Eddies 

From another point of view, the structural unit of 
the vortex sponge can be regarded as an ordered chain 
of eddies of an ideal fluid (Figure 1). Separate point 
eddies interact with each other like vector corpuscles, 
reminiscent of infinitesimal elements of an electric 
current [4]. However, if properly framed, the corre-
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Fig. 4. Single-filament models of (b) a neutral particle and (c), 
(d) electrical charges with correspondence to (a) a distribu-
tion of curvature along the vortex filament. Arrows show a 
direction of vorticity. 

sponding many-body problem may be approached 
phenomenologically in a way similar to that used in a 
system of magnetic moments in the effective field 
theory of ferromagnetism. 

Let us consider a chain of coordinated spin corpus-
cles with a fixed one-dimensional space coordinate x 
of a corpuscle but variable orientation e(x, t) of its 
spin, regarded as a continuous function of x, so that 
\e\ = 1. In case of interaction with nearest neighbours 

only the Hamiltonian per one spin is 

£ + £0 = - \ Q { j ^ j ~ Ax' ^ e(x> 

+ e(x, t) e(x + Ax, r)], (4.1) 

and the equation of motion is 

de(x, t) Vj 
dt (Axf 

[e(x, t) x e(x — Ax, t) 

+ e(x, t) x e{x + Ax, t)], (4.2) 

where Ax stands for the distance between adjacent 
corpuscles, q is the linear density of spin corpuscles, 
and vx is an analog of the Weiss constant in the theory 
of ferromagnetism. 

Expanding e(x ± Ax) over Ax near e(x) and push-
ing Ax to zero yields 

£ = 
QV2i d e ^ 2 

0X 

de d2e 
— = Vxe X —j 
dt dx2 

(4.3) 

(4.4) 

The relation d2e2/dx2 = 0 was used in the derivation of 
(4.3), and a self-interaction term £0 ~ e2 was sub-
tracted. 

Besides the energy density e(x, t), the corresponding 
current density can be found from the continuity 
equation 

öe di 
dt dx 

and (4.4): 

v ^ 3 i d e d 2 e \ j(x,t) = ev1e ( ^ x ^ J (4.5) 

Thus, the motion equation (4.4) of the continuum 
spin system turns out to have the same form as (3.3) of 
the vortex filament. Now, defining the deformation 
k(x, t) = \de/dx\ and the reduced current velocity 
T(X, t) = j/{k2Qv\), (4.4), (4.3), (4.5) can be subjected to 
the same transformation (3.4), (3.5) as (3.3), (3.1) [10]. 
It can be seen that in this model a one-dimensional 
space coordinate x is not necessarily a length along 
the curve but may be rectangular coordinate of a spin 
in the straight chain of spins (see e.g. Figure 5 b). 

Now, returning to the chain of eddies, it should be 
noted in retrospect that the original Hamiltonian and 
the motion equation of the point eddies [4] can be 
represented in the form (4.1) and (4.2) if the space 
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b 

Fig. 5. A single-filament model of (a) a system of two oppo-
sitely charged particles and (b) its chain-of-eddies scanning. 

coordinate x is treated as a length I along the curved 
chain (Figure 1). Thus we obtain in another way the 
vortex filament's motion equations (3.3) and (3.4). 

It is worth noting that a form closely related to (3.4) 
with l = x was assumed [11] as a basic equation in a 
substratum regarded as a packing of tiny vortex rings 
(point vortex dipoles). A vortex dipole model of turbu-
lence is hydrodynamically more correct than that of 
point eddies (vortons) [12], owing to the vanishing of 
divcurl of the fluid velocity. 

5. Self-Energy Interpreted as Mass 

According to (3.2) or (4.3), the part of the kinetic 
energy of the primary fluid due to distortion of the 
vortex filament is 

E0=\Q\v2di = \Q,2\k2di 

= \ Q v2 j (Se/dl)2 dl = \ Q vj J | ilf |2 dl = cons t , (5.1) 

where q stands for the linear density of the fluid along 
the vortex filament. This energy has the meaning of 
the self-energy of the disturbance and may be inter-
preted as the mass m of this disturbance. Thus the 
density 

\QV\l,t) = \Qv\k\l,t) = \Q v2 (de/dl)2 (5.2) 

of the distribution of the distortion energy along the 
vortex filament is identified with the linear density of 
the space distribution of the soliton mass. 

6. Secondary Invariants of Motion 

After an m/E0 renormalization, another integral of 
the vortex filament's motion, j k21 dl, which has no 

clear interpretation in terms of the density flow 

\QV2v = e v l k 2 t 

of distortion energy (see (5.2) and (3.6)), is treated as 
translational momentum 

[\QV2 2 m v 1 f / c 2 i d / 
mvdl = . , , ., 

J E0 J/c2 dl 

of the disturbance and serves as a starting point to 
distinguish between the characteristics of motion of 
the vortex filament and the characteristics of motion 
of a soliton disturbance of this filament. 

Besides the translatory motion associated with the 
deviation of the vortex filament from a planar config-
uration (see (3.6)), the disturbance performs another 
kind of motion determined by the gradient of the 
filament's curvature. Namely, the disturbance spreads 
about diffluently with the local velocity u(l, t) given by 
the Fick's law of diffusion 

k2u = -v1dk2/dl. (6.1) 

The latter does not contribute to the disturbance's 
total momentum: 

+ oo 
| k2u d/ = — Vj j (0/c2/6O dl = 0 . 

— 00 

However, its contribution Ed to the energy E of the 
disturbance motion does not vanish: 

p _ (iev\m,,. .jWßifdi 
J d ' - 2 m V l J J P d / ' 

The sum E of the solition's translational energy 

C ^ Q V2 , , \ k2T2 dl 

and Ed proves to be an energy integral of motion: 

E = El + Ed = 2mv1a). (6.2) 

7. Generalization to Three Dimensions 

A point r of the vortex filament is characterized by 
the orientation of the fluid's vorticity which (in the 
absence of inversion) coincides with the unit tangent 
vector e(r, t) of the curve. Insofar as the vortex sponge 
is a three-dimensional medium with a microstructure 
of a system of randomly oriented vortex filaments, any 
point r is characterized macroscopically by the triad 
{et, e2, e3) of the unit vectors e^r, t), j= 1, 2, 3 (Fig-
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ure 2). This is a kind of the vorticity's tensor field 
resulting in the spinor field {t/^, \l/2, of the sub-
stratum. 

Thus the vortex sponge, as the chaotic three-dimen-
sional composition of the ordered one-dimensional 
subsystems, is described properly by the three equa-
tions (3.3) or (4.4), 

^i = vlejxV2ej, j= 1 , 2 , 3 , 

or by the set of corresponding nonlinear Schrödinger 
equations (3.4) 

- — ^ = + J=1>2>3> 
vx dt 1 1 1 

(here there is no summation over j). From the latter set 
the three-dimensional equation 

dib , £ 
= <A (7.1) Ot QVX 

may be composed, where <A = >Ai <A2 the energy 
density e is ^ ^ 

e = Z W 2 = \ q v I £ k} = \ Q v \ £ ( V , e / . 
j= i J=i J=I 

According to (6.1), any disturbance finds itself even-
tually in a distributed state with /0 k ~ l0/R 1, where 
/0 stands for an effective segment of the polymer chain 
of eddies and R is the span of the disturbance. For 
such a delocalized disturbance we may neglect in (3.4) 
or (7.1) the nonlinear term, which is of relative order 
of magnitude k2: 

= (7.3) 

For a curve close to a straight line there is no need to 
distinguish between the length along the filament and 
a corresponding rectangular coordinate. 

The disturbance moves from one vortex filament to 
another via the hydrodynamic interaction [4] of distant 
eddies. The form (3.4) of the single-filament motion 
equation can only be invariant under generalization 
to three dimensions if the effective segment is greater 
than the average minimal distance between neigh-
bouring vortex filaments (Figure 2). Thus, the validity 
of (7.1) or (7.3) means that the disturbance propagates 
through the vortex sponge mostly along the vortex 
filaments with a slight spreading to adjacent filaments. 
The model is similar to the ideal gas model of statisti-
cal mechanics. 

8. Aether and Matter 

Let us consider the soliton-like excitation of the 
vortex sponge as a particle of matter. 

Thus the aether model of matter turns out to be a 
two-storey construction with the liquid substratum 
serving as the ground floor. Indeed, it is not the soli-
ton-like excitations of the primary fluid but, so to 
speak, excitations of the excitations that are perceived 
by us as particles of matter. 

It can be seen that the energy (5.1) of motion of the 
vortex filament, named above the self-energy E0 of its 
excitation and interpreted now as the mass m of a 
particle of matter, is in fact a part of the kinetic energy 
of the fluid. (It is computed as an addition to the 
self-energy of the vortex filament at rest [8].) The ki-
netic energy (6.2) of motion of a filament's disturbance 
has no immediate sense of a kinetic energy of the fluid. 
Thus the equivalence of mass and energy can not be 
understood literally as an identity of the two kinds of 
energy, the self-energy (nuclear energy) of matter and 
the energy of its motion. It means only that the motion 
of a particle is always accompanied by the parallel 
change in its self-energy, such as that connected with 
the deviation of the loop (Fig. 4 b) from the planar 
configuration. 

Following the broad definition of matter just pro-
posed, the vortex sponge, being disturbed, constantly 
creates particles in some regions while simultaneously 
destroying them in others. Still, there must be some 
topological feature distinguishing true particles from 
various ephemeral "resonances". 

9. Particles and Charges 

The fundamental solution of (3.4) or (7.3) is given by 
a "wave packet" k(l, t) of Gaussian-like or bell-like 
shape (Figure 4 a). Normally it corresponds to a loop 
of the vortex filament, which is almost planar when 
translationally at rest [9] (Figure 4 b). According to 
(3.2), such a loop rotates clockwise around the straight 
line direction of the vorticity. This configuration is just 
the single-filament model of an electrically neutral 
particle. The rotation refers to the spin of a neutron 
and manifests itself macroscopically as a centre of 
torsion of the elastic substratum. 

There turns out to exist another stable configura-
tion of the oriented spatial curve, virtually corre-
sponding to the same smooth solution k(l, t) of (3.4) or 
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Fig. 6. Two-dimensional sketchs: (a) of a neutral particle and 
(b) of a charged particle. 

Fig. 7. A vortex filament model of the elementary electrical 
charge: a branch point of a directed curve with osculation 
and inversion of direction. 

(7.3). This is a filament with lateral inversion of vortic-
ity entailing a specific cusp of the curve (Figure 4 c, d). 
Although these figures show a sharp break of magni-
tude n in the angle of the tangent vector, the continu-
ity of k = \ de/dl\ along with the values of the curva-
ture's k derivatives is retained. At first sight, such a 
"singular" configuration of the vortex filament may 

seem to be physically untenable. However, one must 
keep in mind that the vortex filament itself is a linear 
singularity of a fluid. Moreover, a turbulent state of a 
fluid can be in general viewed as a space distribution 
of ruptures or discontinuities [4,12]. Besides, owing to 
osculation there is no discontinuity of the one-dimen-
sional vorticity vector field in the configuration sug-
gested. 

Figures 4 c, d present possible single-filament mod-
els of the two kinds of electric charge. According to 
(3.2) there must be a transverse torsional stress con-
nected with the mirror arrangement of vorticity in the 
disturbance. This may account for the spin of the 
electron or positron. 

A single-filament model of two oppositely charged 
particles is shown in Figure 5 a. Figure 5 b portrays a 
chain-of-eddies (or "spin wave") scanning of the same 
system. The segment between the two disturbances 
(Fig. 5) corresponds to an electrostatic field. The 
"exterior" left and right parts of the filament (or chain 
of eddies) refer to an "undisturbed vacuum". A pulling 
apart of the peaks in Fig. 5 a or ridges in Fig. 5 b com-
pels some "normally" oriented eddies to change their 
orientation to an opposite one. This process requires 
a work which just corresponds to the energy of the 
electrostatic field. 

Absence of an electrostatic field in the case of a 
neutral particle may be interpreted in three dimen-
sions as a disturbed region pierced randomly by ordi-
nary monodirectional vortex filaments, as contrasted 
with more complicated shapes (see Fig. 6 a with refer-
ence to Figure 4 b). Occurrence of an electrical charge 
means that some of the vortex filaments piercing the 
particle are half-inverted, or "unipolar" ones (see 
Fig. 6 b with reference to Fig. 4 c), differing in this re-
spect from the neutral particle. 

The core of the elementary electrical charge may be 
viewed as a bundle or whisk of curved vortex filaments 
with a cusped point of junction (see Fig. 7 as a three-
dimensional generalisation of the model shown in Fig-
ure 4 c). At large distances from the core it takes the 
form of a hedgehog or a dandelion. 

10. Interactions 

In the system of two charges (Fig. 5) with a short 
interparticle distance the arrangement of eddies 
shown in Fig. 5 b reflects exactly the topology of vor-
ticity in the model of a neutral particle (Figure 4 b). In 
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two oppositely charged particles. 

particular, the region between the two peaks (Fig. 5 a) 
corresponds to the upper half of the loop (Fig. 4 b) 
possessing the greatest curvature. So, already a single-
filament model shows that the interaction region has 
a heightened curvature which grows as charges are 
drawing together. This effect is expressed more dis-
tinctly in three dimensions (Figure 8). 

Thus, the energy of the electrostatic field, as com-
puted from the vortex filament's curvature (see (5.1)), 
should be included in the self-energy of the system of 
charges. We can in principle resolve the total self-
energy into and E2, the energies of the charged 
particles taken singly, and the mutual energy E 1 2 of 
two charges. Let us generalize the motion equation 
(7.1) to the case of the six space coordinates and r2 

under consideration. For two particles of equal 
masses it assumes the form 

St1/ „ 1 
i~i7 = - v x V V (ei + e2 + £i2)>A, (10.1) or q vx 

where the Laplacian V2 is expressed in the variables 
and r2, the wave function ijj depends on the variables 
rl,r2,r a n d t, t he energy densi t ies e 1 ( r 1 , t) a n d e2(r2, t) 
correspond to that of (7.2) for isolated particles, and 
e1 2 (r, t) is the energy density for the interaction region, 
which is specified by the space coordinate r. 

Take notice that a cusp r' is a marked point of the 
disturbance. This means that iJ/ (and with e2 as well) 
is in fact a function of rl—r\ and r2 — r'2. Hence the 
Laplacian V2 may be rewritten in coordinates of the 
centres r\ and r2 of the charged particles. According to 
the foregoing, everywhere except in the neighbour-
hood closest to the points r\ and r2 there must be 
gj + e2 e 1 2 . Neglecting the terms and e2 in (10.1) 
and integrating it over r, we get the equation for the 
system of two charged particles: 

= (10.2) 

where if/' = J ij/ dr and U12 is the interaction potential, 
U12\J/' = — (q v^- 1 J e121j/ dr. It has been shown in a 
statistical model of vector corpuscles [6] (and it may 
also be shown in a Cosserät continuum model of the 
elastic substratum) that £ i 2 = J e i 2 
with proper account of the charge's signs. Hence 
—l / 1 2 ~ 1/k'i— r'2 | as well. If desired, one may inter-
change the variables r\, r'2 with r l s r2 in (10.2). 

Certainly, electrostatics is not the only kind of inter-
action of the vortex sponge's disturbances. And it is 
not the most common one. It is well known that the 
nonlinear Schrödinger equation has many-soliton 
solutions, which can be regarded as associations of 
several primitive solitons. For instance, the two-soli-
ton solution of (3.4) splits into two solitons with equal 
amplitudes under a persistent external perturbation 
[13]. In the present context, many-soliton solutions 
may be interpreted as a model of nuclear, or strong 
interaction. 

11. Stochasticity 
Concerning the question of the probabilistic be-

haviour of the microobject, it is not a matter of prin-
ciple for a consistent substratum approach. Indeed, by 
its construction the model of a microparticle is not an 
isolated object but it constitutes an inalienable part of 
a complicated system of many degrees of freedom. The 
soliton of the nonlinear Schrödinger equation (as with 
many other kinds of solitons) is extremely sensitive to 
external influence. Already slight but recurring hin-
drances impart to the soliton's motion features of dy-
namical chaos. Adding to equation (3.4) a stochastic 
term, not altering the general form of solution, makes 
the soliton's motion similar to the random walk of a 
diffusing particle [14,15]. In such a situation the statis-
tical and thermodynamical mode of representation is 
not only appropriate but adequate. Considering the 
deterministic Schrödiger soliton in a classical thermo-
stat [16] we get all necessary features of microparticle 
behaviour. 

Thus the stochastic behaviour of a quantum object 
appears in fact to be none other than the statistical 
macroscopic manifestation (and perception) of the 
turbulent motion of the liquid substratum. Upon be-
ing immersed into the continually fluctuating medium 
(the "bath"), a stationary disturbance (Figs. 6 a, 4 b) of 
the vortex sponge emits constantly small-amplitude 
plane waves (disturbance waves) with random phases 
[14]. A dilatational component of the latter just corre-
sponds to the gravitational field of a particle. 
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