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The vortex sponge, which postulates a steady state of vortex turbulence in an ideal fluid, is a
substratum invented to explicate parsimoniously “action at a distance” and especially vacuum

electromagnetics.

A disturbance of the vortex sponge’s structural elements is shown to behave like a Schrodinger
quantum particle. Vorticity reversal points model elementary electrical charges.

1. Substratum Approach

The substratum method of modeling physical fields
and particles rests on the idea of a material medium
which fills without gaps all space. This universal con-
tinuum is usually referred to as a substratum, aether
or physical vacuum. In the substratum approach
physical fields are modeled by various kinds of defor-
mation of the substratum, while particles of matter are
associated with soliton-like excitations of the substra-
tum.

One of the more promising small-scale mechanical
models of the substratum is represented by a steady
state of vortex turbulence of an ideal incompressible
fluid, historically called the vortex sponge [1]. It has
been shown [2] that this model is able to simulate
vacuum electromagnetics. A soliton-like excitation of
the vortex sponge’s fine structure will be shown below
to behave like a Schrédinger quantum particle. Other
features of the vortex sponge mimic those of a quan-
tum vacuum of the conventional theory.

2. Methods to Handle Turbulence

Usual methods based on a rigorous hydrodynami-
cal ab initio approach fail to provide information
about the fine structure of a turbulent state of a liquid.
However, they predict the tendency of a turbulence to
self-organization [3].
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As in any many-body problem, in order to promote
a solution one must accept a priori some constitu-
tional assumptions. In the case of turbulence, we may
make a conjecture about vorton structure of the fluid.
This means viewing the turbulent fluid as a system of
eddies treated like quasicorpuscles [4, 5]. At this point
there may be calculated the statistics of “spins” or the
system may even be described in terms of creation-
annihilation operators with the Hamiltonian just as in
quantum electrodynamics [5]. A simple statistics of
spin corpuscles has been shown [6] to be a tentative
model of electrostatic interaction.

The vortex sponge in its proper sense appears as a
result of another assumption concerning the co-
herency of the system of eddies. Separate eddies are
supposed not only to interact with each other, as it
follows from hydrodynamics [4] but, what is more,
they unite in linear chains such as shown in Figure 1.
Thus, the vortex sponge may be viewed [2] as a heap
of randomly oriented straight chains of eddies, or vor-
tex filaments (Figure 2). It is the dynamics of the latter
secondary structure, as contrasted with the dynamics
of the primary fluid, that is of interest here.

We consider first the dynamics of a single isolated
vortex filament or chain of eddies and then generalize
it to three dimensions.
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Fig. 1. A chain of eddies.
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Fig.2. A typical fragment, “nod”, of the vortex sponge.
Arrows indicate a direction of vorticity.

Fig. 3. The drift ¥ of a bent vortex filament in relation to its
curvature and vorticity.

3. Vortex Filament

The motion of a vortex filament is governed by a
dependence of the velocity V of the vortex filament’s
liquid element on the curve’s local form. To express
such a law analytically one needs to describe the vor-
tex filament as a space curve in the usual Frenet-Seret
frame.

First, a point on a spatial curve is defined by the
position vector r, which is a function r(J) of the length [
measured from a fiducial point along the curve. For a
moving curve, there is a further dependence r(l, t) on
the time t. Excluding information about the curve’s
space position, the local form of the curve is fully
specified by its curvature k(l, t) and torsion t(l, t). The
latters are defined through the two unit vectors, a
tangent e(l, t) = Or/0l and principal normal n(l, t), by
the Frenet-Seret formulae

kn=0e/0l, tn=—0(e x m)/0l,
|n|=1.

le| =1, (3.1)
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The motion of the vortex filament without stretch-
ing is described in these terms by
or

Vi,t)=—=v,kexn, 3.2)

ot

where v, stands for the coefficient of local self-induc-
tion and e is assumed (in absence of inversion) to be
parallel to the filament’s vorticity vector [7] (Fig. 3; for
a rigorous derivation see [8]). Differentiating the latter
expression with respect to | and using (3.1), we get a
positionally invariant form of the motion law

e d%e

— =V, X —5.
ke

=5 (3.3)

It is hard to judge from the motion equations (3.3)
and (3.1) the character of the vortex filament’s spacial
and temporal evolution. Fortunately, these equations
can be converted to a form well known in nonlinear
mechanics. It was shown rigorously [9] that (3.3) and
(3.1) are transformed to the nonlinear Schrédinger
equation

i oy o -
~ o= ar HiNPY (3.4)
under the substitution
1
¥ = kexp |:i (j tdl— wt)] (3.5)
0

where @ = const is an energy integral of motion.

Equation (3.4) possesses a soliton solution which
corresponds to a hump or loop (Fig. 4 b) of the vortex
filament. If it has a nonplanar configuration, the dis-
turbance moves along the vortex filament with local
velocity

v(Lbt)=21v,. (3.6)

As in case of the ordinary Schrédinger equation, the
wave function ¥ keeps its norm in the course of
motion: | || dI = const.

4. Chain of Eddies

From another point of view, the structural unit of
the vortex sponge can be regarded as an ordered chain
of eddies of an ideal fluid (Figure 1). Separate point
eddies interact with each other like vector corpuscles,
reminiscent of infinitesimal elements of an electric
current [4]. However, if properly framed, the corre-
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Fig. 4. Single-filament models of (b) a neutral particle and (c),
(d) electrical charges with correspondence to (a) a distribu-
tion of curvature along the vortex filament. Arrows show a
direction of vorticity.

sponding many-body problem may be approached
phenomenologically in a way similar to that used in a
system of magnetic moments in the effective field
theory of ferromagnetism.

Let us consider a chain of coordinated spin corpus-
cles with a fixed one-dimensional space coordinate x
of a corpuscle but variable orientation e(x, t) of its
spin, regarded as a continuous function of x, so that
|e] =1. In case of interaction with nearest neighbours
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only the Hamiltonian per one spin is
v \2
e+e=—10 T [e(x—Ax, t) e(x, t)
+e(x,t)e(x+Ax, 1), (4.1)
and the equation of motion is

Oe(x, 1) vy
a  (Ax)?

[e(x, t) x e(x—Ax, t)

+e(x,t) x e(x+Ax,t)], (42)

where Ax stands for the distance between adjacent
corpuscles, g is the linear density of spin corpuscles,
and v, is an analog of the Weiss constant in the theory
of ferromagnetism.

Expanding e(x + Ax) over Ax near e(x) and push-
ing Ax to zero yields

ov? [(de\?
=% fre 43
e== (ax>, (4.3)
de d%e
5 =v,eX —axz & (4.4)

The relation 0%e?/0x? =0 was used in the derivation of
(4.3), and a self-interaction term g,~ e> was sub-
tracted.

Besides the energy density £(x, t), the corresponding
current density can be found from the continuity
equation

Oe Oj
. 9 9
ot | ox
and (4.4):
Oe 0%
jx,t)=0v3e (—5; X az—> ; 4.5)

Thus, the motion equation (4.4) of the continuum
spin system turns out to have the same form as (3.3) of
the vortex filament. Now, defining the deformation
k(x,t)=|0e/0x| and the reduced current velocity
1(x, t) = j/(k* @Vv3), (4.4), (4.3), (4.5) can be subjected to
the same transformation (3.4), (3.5) as (3.3), (3.1) [10].
It can be seen that in this model a one-dimensional
space coordinate x is not necessarily a length along
the curve but may be rectangular coordinate of a spin
in the straight chain of spins (see e.g. Figure 5b).

Now, returning to the chain of eddies, it should be
noted in retrospect that the original Hamiltonian and
the motion equation of the point eddies [4] can be
represented in the form (4.1) and (4.2) if the space
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Fig. 5. A single-filament model of (a) a system of two oppo-
sitely charged particles and (b) its chain-of-eddies scanning.

coordinate x is treated as a length [ along the curved
chain (Figure 1). Thus we obtain in another way the
vortex filament’s motion equations (3.3) and (3.4).

It is worth noting that a form closely related to (3.4)
with |=x was assumed [11] as a basic equation in a
substratum regarded as a packing of tiny vortex rings
(point vortex dipoles). A vortex dipole model of turbu-
lence is hydrodynamically more correct than that of
point eddies (vortons) [12], owing to the vanishing of
divcurl of the fluid velocity.

5. Self-Energy Interpreted as Mass

According to (3.2) or (4.3), the part of the kinetic
energy of the primary fluid due to distortion of the
vortex filament is

Eo=1o[V2di=1¢ov?[k?*dl

=10v2 [ (@e/dl)? dI =1 gv? [ |y|? dl = const, (5.1)
where g stands for the linear density of the fluid along
the vortex filament. This energy has the meaning of
the self-energy of the disturbance and may be inter-

preted as the mass m of this disturbance. Thus the
density

30V =30vik*(Lt)=3evi@e/d)’ (52)

of the distribution of the distortion energy along the
vortex filament is identified with the linear density of
the space distribution of the soliton mass.

6. Secondary Invariants of Motion

After an m/E, renormalization, another integral of
the vortex filament’s motion, jkzr dl, which has no
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clear interpretation in terms of the density flow
1oViv=gvik’t

of distortion energy (see (5.2) and (3.6)), is treated as
translational momentum

1,2 2
loV _ 2my, [k*zdl
J E mv dl———j w2 dl

of the disturbance and serves as a starting point to
distinguish between the characteristics of motion of
the vortex filament and the characteristics of motion
of a soliton disturbance of this filament.

Besides the translatory motion associated with the
deviation of the vortex filament from a planar config-
uration (see (3.6)), the disturbance performs another
kind of motion determined by the gradient of the
filament’s curvature. Namely, the disturbance spreads
about diffluently with the local velocity u(l, t) given by
the Fick’s law of diffusion

k*u = —v, ok?/al. (6.1)
The latter does not contribute to the disturbance’s
total momentum:
+
[Kudl=—v, [ @k*0l)dl=0.

However, its contribution E; to the energy E of the

disturbance motion does not vanish:
1 2 2

oV | (@k/o1?dl

Ed:J—ZEO %muzdl=2mvf—————“.k2dl

The sum E of the solition’s translational energy

E=I%QV21 , k22 dl
t E, 2

Yofkrdl
and E, proves to be an energy integral of motion:

6.2)

mv?*dl=2myv

E=E+E;=2mv,w.

7. Generalization to Three Dimensions

A point r of the vortex filament is characterized by
the orientation of the fluid’s vorticity which (in the
absence of inversion) coincides with the unit tangent
vector e(r, t) of the curve. Insofar as the vortex sponge
is a three-dimensional medium with a microstructure
of a system of randomly oriented vortex filaments, any
point r is characterized macroscopically by the triad
{e,, e,, e;} of the unit vectors e(r,t), j=1,2,3 (Fig-
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ure 2). This is a kind of the vorticity’s tensor field
resulting in the spinor field {¥, ¥,, Y3} of the sub-
stratum.

Thus the vortex sponge, as the chaotic three-dimen-
sional composition of the ordered one-dimensional
subsystems, is described properly by the three equa-
tions (3.3) or (4.4),

Oe; .

a—;=vlejxvjzej, ]=1’2’3,
or by the set of corresponding nonlinear Schrédinger
equations (3.4)

i oY

v, Ot
(here there is no summation over j). From the latter set
the three-dimensional equation

oy

€
"t (O s . 2
5 v, VY QVIW

=V2y;+ 1 1y1%;, j=1,2,3,

(7.1)

may be composed, where Y =y, ¥/, /5 and the energy
density ¢ is (72)
3

3 3
e=10v T Iyl =1evi T K =10 T (V).
i=1 j=1 j=1

According to (6.1), any disturbance finds itself even-
tually in a distributed state with Iok ~ [,/R < 1, where
I, stands for an effective segment of the polymer chain
of eddies and R is the span of the disturbance. For
such a delocalized disturbance we may neglect in (3.4)
or (7.1) the nonlinear term, which is of relative order
of magnitude k?:

i E ==y Vzlll .
For a curve close to a straight line there is no need to
distinguish between the length along the filament and
a corresponding rectangular coordinate.

The disturbance moves from one vortex filament to
another via the hydrodynamic interaction [4] of distant
eddies. The form (3.4) of the single-filament motion
equation can only be invariant under generalization
to three dimensions if the effective segment is greater
than the average minimal distance between neigh-
bouring vortex filaments (Figure 2). Thus, the validity
of (7.1) or (7.3) means that the disturbance propagates
through the vortex sponge mostly along the vortex
filaments with a slight spreading to adjacent filaments.
The model is similar to the ideal gas model of statisti-
cal mechanics.

(13)
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8. Aether and Matter

Let us consider the soliton-like excitation of the
vortex sponge as a particle of matter.

Thus the aether model of matter turns out to be a
two-storey construction with the liquid substratum
serving as the ground floor. Indeed, it is not the soli-
ton-like excitations of the primary fluid but, so to
speak, excitations of the excitations that are perceived
by us as particles of matter.

It can be seen that the energy (5.1) of motion of the
vortex filament, named above the self-energy E, of its
excitation and interpreted now as the mass m of a
particle of matter, is in fact a part of the kinetic energy
of the fluid. (It is computed as an addition to the
self-energy of the vortex filament at rest [8].) The ki-
netic energy (6.2) of motion of a filament’s disturbance
has no immediate sense of a kinetic energy of the fluid.
Thus the equivalence of mass and energy can not be
understood literally as an identity of the two kinds of
energy, the self-energy (nuclear energy) of matter and
the energy of its motion. It means only that the motion
of a particle is always accompanied by the parallel
change in its self-energy, such as that connected with
the deviation of the loop (Fig. 4b) from the planar
configuration.

Following the broad definition of matter just pro-
posed, the vortex sponge, being disturbed, constantly
creates particles in some regions while simultaneously
destroying them in others. Still, there must be some
topological feature distinguishing true particles from
various ephemeral “resonances”.

9. Particles and Charges

The fundamental solution of (3.4) or (7.3) is given by
a “wave packet” k(l,t) of Gaussian-like or bell-like
shape (Figure 4a). Normally it corresponds to a loop
of the vortex filament, which is almost planar when
translationally at rest [9] (Figure 4b). According to
(3.2), such a loop rotates clockwise around the straight
line direction of the vorticity. This configuration is just
the single-filament model of an electrically neutral
particle. The rotation refers to the spin of a neutron
and manifests itself macroscopically as a centre of
torsion of the elastic substratum.

There turns out to exist another stable configura-
tion of the oriented spatial curve, virtually corre-
sponding to the same smooth solution k(J, ) of (3.4) or



Fig. 6. Two-dimensional sketchs: (a) of a neutral particle and
(b) of a charged particle.

Fig. 7. A vortex filament model of the elementary electrical
charge: a branch point of a directed curve with osculation
and inversion of direction.

(7.3). This is a filament with lateral inversion of vortic-
ity entailing a specific cusp of the curve (Figure 4c, d).
Although these figures show a sharp break of magni-
tude = in the angle of the tangent vector, the continu-
ity of k = |0e/0l| along with the values of the curva-
ture’s k derivatives is retained. At first sight, such a
“singular” configuration of the vortex filament may
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seem to be physically untenable. However, one must
keep in mind that the vortex filament itself is a linear
singularity of a fluid. Moreover, a turbulent state of a
fluid can be in general viewed as a space distribution
of ruptures or discontinuities [4, 12]. Besides, owing to
osculation there is no discontinuity of the one-dimen-
sional vorticity vector field in the configuration sug-
gested.

Figures 4c, d present possible single-filament mod-
els of the two kinds of electric charge. According to
(3.2) there must be a transverse torsional stress con-
nected with the mirror arrangement of vorticity in the
disturbance. This may account for the spin of the
electron or positron.

A single-filament model of two oppositely charged
particles is shown in Figure 5a. Figure 5b portrays a
chain-of-eddies (or “spin wave”) scanning of the same
system. The segment between the two disturbances
(Fig. 5) corresponds to an electrostatic field. The
“exterior” left and right parts of the filament (or chain
of eddies) refer to an “undisturbed vacuum”. A pulling
apart of the peaks in Fig. Sa or ridges in Fig. 5b com-
pels some “normally” oriented eddies to change their
orientation to an opposite one. This process requires
a work which just corresponds to the energy of the
electrostatic field.

Absence of an electrostatic field in the case of a
neutral particle may be interpreted in three dimen-
sions as a disturbed region pierced randomly by ordi-
nary monodirectional vortex filaments, as contrasted
with more complicated shapes (see Fig. 6a with refer-
ence to Figure 4b). Occurrence of an electrical charge
means that some of the vortex filaments piercing the
particle are half-inverted, or “unipolar” ones (see
Fig. 6b with reference to Fig. 4c¢), differing in this re-
spect from the neutral particle.

The core of the elementary electrical charge may be
viewed as a bundle or whisk of curved vortex filaments
with a cusped point of junction (see Fig. 7 as a three-
dimensional generalisation of the model shown in Fig-
ure 4¢). At large distances from the core it takes the
form of a hedgehog or a dandelion.

10. Interactions

In the system of two charges (Fig. 5) with a short
interparticle distance the arrangement of eddies
shown in Fig. 5b reflects exactly the topology of vor-
ticity in the model of a neutral particle (Figure 4b). In
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Fig. 8. The space arrangement of vorticity in the system of
two oppositely charged particles.

particular, the region between the two peaks (Fig. Sa)
corresponds to the upper half of the loop (Fig. 4b)
possessing the greatest curvature. So, already a single-
filament model shows that the interaction region has
a heightened curvature which grows as charges are
drawing together. This effect is expressed more dis-
tinctly in three dimensions (Figure 8).

Thus, the energy of the electrostatic field, as com-
puted from the vortex filament’s curvature (see (5.1)),
should be included in the self-energy of the system of
charges. We can in principle resolve the total self-
energy into E, and E,, the energies of the charged
particles taken singly, and the mutual energy E,, of
two charges. Let us generalize the motion equation
(7.1) to the case of the six space coordinates r, and r,
under consideration. For two particles of equal
masses it assumes the form

1
i—=—v, VWY —— (e, +&,+&,)¥, (10.1)
ot oV,

where the Laplacian V2 is expressed in the variables r,
and r,, the wave function y depends on the variables
ry,r,,rand t, the energy densities ¢, (r, , t) and &, (r,, t)
correspond to that of (7.2) for isolated particles, and
&,,(r, t) is the energy density for the interaction region,
which is specified by the space coordinate r.

Take notice that a cusp ' is a marked point of the

disturbance. This means that y (and ¢, with ¢, as well)

is in fact a function of r, —r) and r,—r),. Hence the
Laplacian V2 may be rewritten in coordinates of the
centres r; and r), of the charged particles. According to
the foregoing, everywhere except in the neighbour-
hood closest to the points r; and r, there must be
&, + &, < &,,. Neglecting the terms ¢, and ¢, in (10.1)
and integrating it over r, we get the equation for the
system of two charged particles:
.oy’

i—=—v, V' +U,LVY,

. (10.2)
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where y' = [y dr and U, is the interaction potential,
Uy, ¥ =—(gv,) "' [ &;,¥ dr. It has been shown in a
statistical model of vector corpuscles [6] (and it may
also be shown in a Cosserat continuum model of the
elastic substratum) that E;,=[e,,dr~1/|r;—r}|
with proper account of the charge’s signs. Hence
—U,,~ 1/|r—r%| as well. If desired, one may inter-
change the variables r, ¥, with r,, r, in (10.2).

Certainly, electrostatics is not the only kind of inter-
action of the vortex sponge’s disturbances. And it is
not the most common one. It is well known that the
nonlinear Schrodinger equation has many-soliton
solutions, which can be regarded as associations of
several primitive solitons. For instance, the two-soli-
ton solution of (3.4) splits into two solitons with equal
amplitudes under a persistent external perturbation
[13]. In the present context, many-soliton solutions
may be interpreted as a model of nuclear, or strong
interaction.

11. Stochasticity

Concerning the question of the probabilistic be-
haviour of the microobject, it is not a matter of prin-
ciple for a consistent substratum approach. Indeed, by
its construction the model of a microparticle is not an
isolated object but it constitutes an inalienable part of
a complicated system of many degrees of freedom. The
soliton of the nonlinear Schrodinger equation (as with
many other kinds of solitons) is extremely sensitive to
external influence. Already slight but recurring hin-
drances impart to the soliton’s motion features of dy-
namical chaos. Adding to equation (3.4) a stochastic
term, not altering the general form of solution, makes
the soliton’s motion similar to the random walk of a
diffusing particle [14, 15]. In such a situation the statis-
tical and thermodynamical mode of representation is
not only appropriate but adequate. Considering the
deterministic Schrodiger soliton in a classical thermo-
stat [16] we get all necessary features of microparticle
behaviour.

Thus the stochastic behaviour of a quantum object
appears in fact to be none other than the statistical
macroscopic manifestation (and perception) of the
turbulent motion of the liquid substratum. Upon be-
ing immersed into the continually fluctuating medium
(the “bath”), a stationary disturbance (Figs. 6a, 4b) of
the vortex sponge emits constantly small-amplitude
plane waves (disturbance waves) with random phases
[14]. A dilatational component of the latter just corre-
sponds to the gravitational field of a particle.
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